Modulkürzel	ECTS	Sprache	Semester	Art	Turnus
ERNEN	5	Deutsch	Semester 4	Pflicht	semesterweise

Modultitel:

Erneuerbare Energien

Zuordnung zum Curriculum als Pflichtmodul im Studiengang:

Energietechnik (4. Sem), Umwelttechnik (4. Sem)

Einordnung und Bedeutung des Moduls bezogen auf die Ziele des Studiengangs

Bereits heute spielen erneuerbare Energien eine bedeutende Rolle in der Strom- und Wärmebereitstellung. Im Hinblick auf eine klima- und ressourcenschonende Weiterentwicklung der Energiemärkte werden erneuerbare Energien in den nächsten dreißig Jahren und damit in der entscheidenden Zeitspanne für die zur Zeit in Ausbildung befindlichen Energieingenieure die absolut dominante Energiequelle werden. Grundlegende Kenntnisse über die verschiedenen Arten von erneuerbaren Energien und deren Nutzung sind von daher notwendig. Das Modul Eneuerbare Energiesysteme vermittelt grundlegende Fertigkeiten zur technischen Auslegung von Solarthermischen-, Windenergie-, Biomasse- und Photovoltaiksystemen.

Modulverantwortliche/r	Lehrpersonal
Arlitt	Arlitt, Renze, Klumpp

Inhalt:

- Photovoltaik
- Biomasse
- Windenergienutzung
- Solarthermie

Lernergebnisse

Nach erfolgreichem Abschluss des Moduls können die Studierenden:

Fachkompetenz

- Angebot von erneuerbarer Energie (technisches Potential) unter Berücksichtigung regionaler und zeitlicher Unterschiede
- Techniken der Konvertierung von erneuerbarer Energie zu Strom und Wärme
- Grundkenntnisse der Bestandteile und der Auslegung regenerativer Energiesysteme

Lern- und Methodenkompetenz

- Erstellung von Potenzialabschätzungen (theoretisches, technisches und wirtschaftliches Potential)
- Erstellung von Mess- und Versuchsberichten

Selbstkompetenz:

Abschätzung und Plausibilitätsprüfung auf der Basis von Kennwerten

Sozialkompetenz:

Durchführung von Laborversuchen im Team

Literaturhinweise

Quaschning, Regenerative Energiesysteme

Skript, Folien im Moodle Kurs

Lehr- und Lernform	Vorlesung (3 SW	Vorlesung (3 SWS), Labor (1 SWS)					
Prüfungsform			Vorleistung				
Aufbauende Module		Wahlpflichtfächer Windkrafttechnologie, Windparkprojektierung, PV, Energiekonzepte für Gebäude und Quartiere					
Vorausgesetzte Module	Strömungslehre, I Thermodynamik	Strömungslehre, Elektrotechnik I und Elektrotechnik II, Wärmeübertragung, Thermodynamik					
Modulumfang (Rechengröße 1 ECTS=30 Stunden, Gesamtzeit = nECTS*30 =	Präsenzzeit 60 h	Selbststudium 90 h	Praxiszeit 0 h	Gesamtzeit 150 h			

Gesamtzeit, die je nach		
Modulplanung auf die drei		
Zeitkategorien zu verteilen sind)		