
•
•
•
•
•

Energy and AI 18 (2024) 100452 

A
2

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Enhancing PV feed-in power forecasting through federated learning with
differential privacy using LSTM and GRU
Pascal Riedel a,∗, Kaouther Belkilani b, Manfred Reichert a, Gerd Heilscher b,
Reinhold von Schwerin a

a Institute of Databases and Information Systems, Ulm University, Ulm, 89081, Germany
b Smart Grids Research Group, Ulm University of Applied Sciences, Ulm, 89081, Germany

H I G H L I G H T S

Federated learning with long short-term memories and gated recurrent units for electrical feed-in power forecasting.
Training on energy data from real residential households with PV-systems connected to the low-voltage grid.
Proposing a federated-driven method with differential privacy for the privacy-preserving prediction of the feed-in power.
Advanced federated aggregation strategies to mitigate adverse data distributions on the model performance.
Model performance comparison and analysis of different training methods.
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A B S T R A C T

Given the inherent fluctuation of photovoltaic (PV) generation, accurately forecasting solar power output
and grid feed-in is crucial for optimizing grid operations. Data-driven methods facilitate efficient supply
and demand management in smart grids, but predicting solar power remains challenging due to weather
dependence and data privacy restrictions. Traditional deep learning (DL) approaches require access to
centralized training data, leading to security and privacy risks. To navigate these challenges, this study utilizes
federated learning (FL) to forecast feed-in power for the low-voltage grid. We propose a bottom-up, privacy-
preserving prediction method using differential privacy (DP) to enhance data privacy for energy analytics on
the customer side. This study aims at proving the viability of an enhanced FL approach by employing three
years of meter data from three residential PV systems installed in a southern city of Germany, incorporating
irradiance weather data for accurate PV power generation predictions. For the experiments, the DL models
long short-term memory (LSTM) and gated recurrent unit (GRU) are federated and integrated with DP.
Consequently, federated LSTM and GRU models are compared with centralized and local baseline models
using rolling 5-fold cross-validation to evaluate their respective performances. By leveraging advanced FL
algorithms such as FedYogi and FedAdam, we propose a method that not only predicts sequential energy data
with high accuracy, achieving an 𝑅2 of 97.68%, but also adheres to stringent privacy standards, offering a
scalable solution for the challenges of smart grids analytics, thus clearly showing that the proposed approach
is promising and worth being pursued further.
1. Introduction

In Germany [1], the majority of photovoltaic (PV) systems is in-
stalled in residential areas and connected to low-voltage distribution
electricity grids [2,3]. A residential PV system is characterized as a PV
installation possessing a maximum rated power capacity not exceeding
10 kW [2,4–6]. The electricity produced from residential PV systems
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for 12% of total net electricity generation in Germany, in the year
2023 alone [7]. It is estimated that gross electricity generation in
Germany from 100% renewable energies will increase to up to 780
TWh by 2050 [8]. Thus, a major increase in the number of PV systems
has been observed in recent years, introducing new challenges for the
electricity grid management and control in low-voltage grids. These
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challenges encompass power quality, voltage stability, and reactive
power support management, all related to the integration of PV systems
into low-voltage grids [2,9,10]. The objective of such an electrical
power system is the reliable and economical supply of electric power
to end-customers [2,11].

For the solar power prediction from PV systems, measurement
techniques can be categorized as physical or statistical. However, in
practice, the lines between these approaches are often unclear. For
example, numerical weather prediction models or sky images are used
in physical approaches as a part of irradiance prediction, whereas
statistical approaches forecast solar irradiance from statistically derived
past data [12]. In deterministic approaches, output prediction is done
by using PV device models obtained through different software such as
PVSyst, and system advisor model (SAM), among others [13]. Some-
times these prediction methods are not able to reflect the variations in
the data. Due to the prevalence of such cases, probabilistic or machine
learning (ML) models are commonly used [10,14].

Distribution system operators (DSOs) need to plan, operate, and
maintain the electrical grid to avoid voltage band violations or over-
loading of grid assets [3,11]. Thus, the inherent objective of a DSO
is to avoid unnecessary financial investments in brute force grid rein-
forcement which may occur due to missing knowledge on the PV power
contribution in different grid sections. The DSOs require accurate infor-
mation on distributed energy resources in the electrical grid in order to
choose appropriate grid operations. Power flow from the residential PV
has a tremendous effect on the load flow of the low voltage distribution
grid transformer. By accurately predicting power flow from residential
PV systems, grid operators can better anticipate fluctuations in supply
and demand, this can help mitigate issues such as voltage fluctuations,
overloading of transformers, and potential grid instability.

Data-driven methods applied on end-user meter data from residen-
tial PV systems for feed-in power forecasting can support the grid
management of the DSOs to increase the stability and reliability of
the electrical grid, leveraging cost-saving effects [3,10,12]. End-user
data streams are historical and include past feed-in powers and residual
loads in a time series format [14,15]. Historical weather information
can be added on top of the training data to increase the data quality.
The end-user based feed-in forecast can serve as a valuable input pa-
rameter for the DSO for the active control and planning process on the
low-voltage grid. The top-down structure and the unidirectional power
flow of conventional distribution grids allow operating parameters such
as voltage limits or resource utilization to be maintained to a large
extent during grid planning. This simplifies operational management,
as extensive monitoring of the system status is not necessary. The
addition of PV systems, which mainly takes place in the distribution
grid due to the size of the systems, changes this top-down structure
and thus also increases the complexity of grid operation. This leads
to bidirectional current flows and makes it difficult to maintain the
operating parameters. A feed-in forecast therefore plays a major role
for the DSOs. The responsibility of a DSO is also shown in Fig. 1.

A key challenge for feed-in power forecasting is data privacy. Since
forecasting at low-voltage level, typically means at the end-customer
level, the general data protection regulation (GDPR) must be consid-
ered within Europe [16,17]. However, ML and statistical forecasting
models usually require access to aggregated centralized training data.
This approach harbors data privacy risks as well as a risk of a GDPR
breach. Federated learning (FL) with differential privacy (DP) is pro-
posed in this study to predict the amount of energy fed into the grid
in a privacy-preserving manner and to avoid the potential risks stem-
ming from data centralization. Utilizing FL, deep learning (DL) models,
including neural networks, can be trained using distributed datasets
without necessitating the aggregation and centralized storage of this
data [18–22]. In fact, the data remains in data silos (e.g. clients on smart
meter gateways) and only locally trained model weights are sent to a
secure server for a model aggregation. The proposed prediction method
in this study incorporates FL models with DP, a privacy technique that
2 
Fig. 1. Electricity from the medium-voltage grid has to be converted into the low-
voltage grid for use by end customer (e.g. households or small factories) Generation
structure and power flows in a grid with renewable electricity generation. The DSO
coordinates energy distribution and demand management for both grids.

injects noises into the federated model [19,20,23], to fulfill the data pri-
vacy and security requirements for data-driven analyses in low-voltage
grids. The dataset for the proposed prediction method encompasses
authentic meter data from residential PV systems in Southern Germany,
marking the first instance of its application in an FL context.

Another challenge is the non-independently and identically dis-
tributed (Non-IID) data between the data silos in an FL system [24].
It poses a challenge to FL by influencing the federated model perfor-
mance [25]. Depending on the number of data silos and the level of
Non-IID between them, the federated model may have difficulties to
find an optimal local minima resulting in higher error rates in the
model inference task. Adding a new data silo in an existing FL system
can easily disturb the model convergence when the joining training
data is heavily Non-IID [24–27]. This requires the development and
implementation of advanced federated aggregation strategies designed
to mitigate the adverse effects of Non-IID data, ensuring that the
federated model remains effective and robust across all data silos. To
reduce the impact of Non-IID, advanced FL aggregation strategies such
as FedAdam [24] and FedYogi [26] are used in this study.

Concerning the ML model architectures, it has been shown by var-
ious prior studies that sequential DL models yield promising outcomes
when applied to time series energy data [15,28–32]. Consequently, in
this study, federated long short-term memory (LSTM) and gated recur-
rent unit (GRU) models, trained on meter data from PV systems, are
evaluated in comparison to their centralized counterparts. The findings
from these experiments provide valuable insights into FL systems with
sequential DL models on distributed energy data, which can support
the DSO in optimizing the low-voltage grid management.

In this comparative study, real-world measurements of PV solar
power generation from individual households, with a time granularity
of 15 min, are utilized alongside regional solar irradiance data.

Thus, the highlights of this study can be summarized as follows:

• Accurate predictions of the feed-in power into the grid with a
time resolution of 15 min per sample by different data-driven
forecasting methods.

• Enhancing the required data privacy by the DSO for smart grid
analytics using FL with DP.

• Training federated LSTM and GRU models directly on prepared
real-world meter data, including regional solar irradiance data,
using various federated aggregation strategies across different
test settings, thereby facilitating a fair comparison in terms of
accuracy.
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Fig. 2. Sequential neural network model architectures.
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• Comparing the federated models with local and centralized base-
line models through a systematic evaluation design.

The structure of the remainder of this paper is organized as follows:
elated work, the DL architectures employed, and the concept of FL
re delineated in Section 2. The dataset used to train the models and
he characteristics of the data as well as the necessary pre-processing
teps are elaborated in Section 3. Also presented within that section

are the different training approaches, along with the workflow of the
proposed feed-in power forecasting method employing FL and DP. The
experimental settings, including the hyperparameter search and testing
settings for both approaches, is described in Section 4. The experimen-
tal results derived from comparative tests and the implications of these
findings for low-voltage grid management are described in Section 5.
From these results, the most suitable privacy-preserving prediction
method for end-user feed-in power forecasting is selected. A conclusion
of the main findings of this paper is provided in Section 6.

2. Related work

In this section, previously published studies and works that have ad-
ressed the topic of data-driven feed-in power forecasting are discussed.
nitially, an explanation is provided for the neural network model

architectures that are used for the feed-in power forecasting, with a
ocus on sequential DL models. Subsequently, an outline is presented for
he state of the art research concerning FL, DP and relevant federated
odel aggregation strategies.

2.1. Model architectures

Several papers demonstrated that a data-driven forecasting is best
achieved with sequential neural network architectures trained on suf-
ficient time series data [15,27,29,30,33–36]. In this context, the LSTM
model is often discussed. Introduced by Hochreiter and Schmidhuber
37] the LSTM model uses a recurrent neural network (RNN) structure

and considers temporal dependencies within the data, enabling the
learning of seasonal patterns that are a common characteristic of time
series. In addition, the LSTM models showed they are successfully
mitigating the vanishing gradient problem, a common challenge in DL
and RNNs in particular where the gradients in the training procedure
exponentially decrease when they are propagated backwards through
the network, resulting in a model with poor generalization [34,35,37,
38]. As stated in [36,37,39] the forget, input and output gates in the
STM model architecture manage the flow of information by selectively
dding or removing information to the cell state, thus maintaining
 longer memory compared to standard RNNs and preventing the
anishing gradient problem.

Jailani et al. [40] investigated the power of LSTM-based models
in solar energy forecasting, comparing independent and hybrid LSTM
models. The study highlighted the superiority of LSTM in forecasting so-
lar radiation and generated PV power, showcasing LSTM’s adaptability
and effectiveness in different forecasting scenarios.
3 
Skrobek et al. [41] demonstrated successfully LSTM models on the
prediction of the sorption process in adsorption chillers. Their results
indicate that the LSTM model was capturing the dynamics of sorption
processes, showcasing the potential of LSTMs in optimizing cooling
systems.

Kumar et al. [33] analyzed and compared LSTM models for fore-
casting solar and wind power in isolated microgrids, focusing on load
frequency control. Their study addressed the stochastic nature of re-
newable sources and their integration into electrical power systems,
using LSTM to predict the wind speed and solar irradiance.

A modern advancement of the LSTM architecture is the GRU archi-
ecture introduced by Cho et al. [42]. The GRU simplifies the LSTM

architecture by combining the input and forget gates into a single
update gate and merging the cell state and hidden state into one,
thereby reducing model complexity. GRUs were shown in the literature
to achieve comparable or superior performance to LSTMs in time series
forecasting [28–31,39,42].

Kisvari et al. [43] utilized GRUs for accurate predictions of wind
power. Their proposed GRU model not only offered faster training
processes compared to LSTM but also showed less sensitivity to noises,
which is important for the dynamic and unpredictable nature of wind
power generation.

Mahjoub et al. [44] conducted a comparative study on the perfor-
mance of GRU and LSTM models in forecasting electricity consumption
based on power loads. Their research indicated that GRUs not only

arginally surpassed LSTMs in terms of predictive accuracy but also
demonstrated a considerable reduction for the model training time,
especially when GRUs are applied on large-scaled datasets.

Skrobek et al. [45] compared LSTM, GRU and bidirectional LSTM
models for predicting the mass of adsorption beds used in cooling
systems. Although all three models performed similarly, the GRU model
showed the highest accuracy in the prediction task, emphasizing the
potential of GRU models in terms of accuracy and computational
efficiency.

More traditional ML architectures such as random forests, decision
rees, or support vector machines for feed-in power prediction are also

discussed by [46–49], but several experiments have shown that they
are outperformed by DL models [50,51]. Although [14,52] showed
promising results when temporal convolutional networks are used,
LSTMs and GRUs are generally better suited for the training on long
seasonal time series data due to their inherent memory function and
capability of capturing temporal dependencies.

Based on the findings of these papers, the LSTM and GRU models
are federated and compared with baseline models in this study. The
architectures of these models are depicted in Fig. 2.

2.2. Federated learning

The federated paradigm of training distributed DL models were dis-
cussed in some papers, addressing the concerns of missing data privacy
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Fig. 3. Workflow of the privacy-enhanced federated feed-in forecasting with DP.
in centralized data-driven approaches [16,18,20,21,24,26,27,53–55].
In an FL system, training data remains within its data silos, thereby
obviating the need for data centralization. A typical example of a
data silo is a healthcare facility where GDPR compliance is mandatory
due to sensitive patient data, e.g., for X-rays images [17]. After the
local models are trained on each data silo, the raw model weights
are transmitted and subsequently aggregated by a central coordinat-
ing server [16,21,26]. In this aggregation phase, all received model
weights are combined by the coordinator in a node-wise averaging
manner to build an improved single global model. This updated global
model is then redistributed to all participating data silos and a new
training round is started. For the global model convergence, the number
of federated training rounds is set in advance, which is a tunable
hyperparameter [54,56].

The authors of [18] characterize the federated training process as
an optimization task defined as follows:

min 𝑓 (𝑤) =
𝑁
∑

𝑘=1

𝑛𝑘
𝑛
𝐹𝑘(𝑤), (1)

where 𝑁 represents the number of data silos, 𝑛𝑘 denotes the volume
of sensitive training data on data silo 𝑘, 𝑛 the total amount of training
data across all silos and 𝐹𝑘(𝑤) refers to the local loss function of each
silo. The updated local model weights are asynchronously sent back
to the coordinator, where an updated global model is computed using
an aggregation strategy such as federated averaging (FedAvg) [24,27]
according to Eq. (1).

Widmer et al. [14] investigated FL and model personalization for
electrical load forecasting. By benchmarking federated models against
baseline centralized models, the researchers demonstrated that fed-
erated models can achieve performance and accuracy comparable to
centralized models. The authors also introduced differential compari-
son, a method that compares the loss offsets from multiple data sources
and considers different data constraints to provide a solution to the
Non-IID problem in FL systems.

Zhang et al. [27] introduced a federated multi-energy load forecast-
ing method using a modified LSTM model for optimizing microgrids.
Their findings indicate that federated models can attain accuracy levels
similar to those of centralized models, while also delivering higher
precision compared to individual silo-based models.

Generally, FL can be utilized across diverse sectors. From the health-
care industry with patient data to autonomous driving with personal
4 
driving information, the necessary data protection aspects for ML in
these industries can be addressed by FL [17,57]. Moreover, the feder-
ated approach also eliminates the cost-intensive process of centralizing
data [18,26,54,55]. An overview of the complete FL process with
FedAvg is visualized in Fig. 3.

2.3. Security in federated learning systems

In an FL system the training data in the silos remain privately
within the local storage and are not moved to a central point (pri-
vacy by design), whereas traditional ML methods require centralized
datasets. There are several enhanced security mechanisms to improve
data privacy in FL that are being discussed in the research community.

Wu et al. [58], Zhou et al. [59], Zhu [60] all agree that secure
multi-party computation (SMC) can enhance the security of FL systems.
SMC protocols allow data silos to jointly compute functions on their
net inputs while keeping those inputs private. This is achieved by
obscuring individual data contributions of each silo, thus safeguarding
the integrity of the overall model training process. Despite its benefits,
SMC incurs substantial computational and communication overhead
due to the requirement for secret sharing across data silos.

Zhu [60], Hussien et al. [61] propose the adoption of homomorphic
encryption on model weights. This technique enables the performance
of operations on encrypted data, thus allowing secure aggregation of
model updates without exposing the underlying data or model param-
eters. It protects the integrity of the data and the privacy of the models’
parameters across potentially insecure networks. Despite its potential,
homomorphic encryption exhibits even greater computational complex-
ity and further reduced processing speed compared to SMC, making it
impractical for most of the real-world scenarios [62].

Riedel et al. [17], McMahan et al. [19], Tang et al. [55], Ouadrhiri
and Abdelhadi [63] discuss the integration of DP to harden FL systems
against privacy-specific attacks such as false data injection or mem-
bership inference attacks [64]. DP injects noises to the training data
and model parameters, ensuring that the output of the training process
does not reveal sensitive information about the training data [23]. This
approach is crucial for maintaining confidentiality and trust of a data
silo. The difficulty with DP comes with keeping the balance between
privacy and model performance [63].

These enhanced security mechanisms increase security in FL sys-
tems, but also have their shortcomings. However, the inclusion of
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Fig. 4. Power metrics from a residential household with an installed PV system in the designated test area. Data points represent average values calculated over one-month
intervals, illustrating seasonal variations and their impact on energy production and residual load.
DP has shown the most promising trade-off in some related works.
Therefore, DP is utilized for the proposed forecasting method in this
study.

2.4. Model aggregation strategies

Extensions to the FedAvg algorithm (see Eq. (1)) were proposed in
other papers, underscoring the necessity for more robust solutions to
address the challenges posed by Non-IID data silos and domain shifts
in FL systems.

FedNova, as proposed by [65], introduces a normalized variant of
the FedAvg algorithm. This approach facilitates accelerated model con-
vergence by mitigating objective inconsistencies arising from heteroge-
neous local model updates, which otherwise can result in suboptimal
stationary points of the global objective function.

Karimireddy et al. [66] suggested the utilization of stochastic con-
trol variables during the model aggregation phase to mitigate client
drift, which arises as a direct consequence of the presence of heavily
Non-IID data across silos. Their approach aims to enhance the conver-
gence stability and efficiency of FL systems by aligning local updates
more closely with the global model objective.

Reddi et al. [24] introduced several extensions of FedAvg to opti-
mize FL in non-convex settings. Drawing from advancements in cen-
tralized DL, they proposed FedAdam, FedAdagrad, and FedYogi. These
aggregation strategies use pseudo-gradients and accommodate negative
values, thereby enhancing convergence rates and model robustness
compared to the standard FedAvg algorithm.

Zhang et al. [27] examined FL on microgrid data with the four
advanced model aggregation strategies FedAvg, FedAdagrad, FedAdam,
and FedYogi. The authors also examined the security aspect of these
strategies in training FL models. They demonstrated the effectiveness of
adaptive optimization techniques for suboptimal data distributions and
under the assumption of data injection attacks. Their results showed
that FedAdagrad can maintain stability and has the best prediction
performance. However, Riedel et al. [26], Reddi et al. [24] showed that
FedAdagrad generally performs worse than FedAdam and FedYogi.

Considering these findings, LSTM networks and GRUs are trained
for the task of feed-in power forecasting using FedAvg, FedAdam, and
FedYogi in this study.
5 
3. Methods

In this section the dataset, data preparation process and the different
model training approaches for conducting the comparison study are
delineated.

3.1. Dataset

For this paper, meter data from a suburban residential area in the
southern German city of Ulm is used. The dataset comprises feed-in
power time series generated by three distinct PV systems installed in
households within the test area, spanning a period of two to three
years. Additionally, the dataset encompasses residual load data from
the DSO to address energy shortages, which may have arisen due to
suboptimal PV power generation. Both variables were measured with a
time resolution of 15 min. Fig. 4 shows the monthly averaged measured
feed-in power of a single PV system and residual load of a household
from the test area. As can be seen in Fig. 4, the feed-in power is higher
in the summer months than in the winter months, clearly demonstrating
the seasonality in the time series dataset.

To include meteorological data, time series of solar surface irra-
diance over the same period and with the same time resolution are
used to create a more stable forecasting model. The solar irradiance
data for the test area were obtained from Solargis including global
horizontal irradiance (GHI) values in W/m2 from January 1, 2015, to
December 31, 2018, offering high-resolution meteorological informa-
tion. It includes spatially disaggregated information derived from the
ERA5 model, using Solargis’ proprietary methods to achieve a spatial
resolution of 250 m for solar data and 1 km to 25 km for meteorological
parameters [67]. The data is interpolated to 15-minute intervals to en-
hance temporal granularity, making it suitable for various applications
in solar energy forecasting, grid management, and climate analysis.
Since irradiance data plays an important role in the generation of PV
solar power, the GHI is used in the proposed prediction method.

Incorporating GHI data into the federated model leverages an ex-
ternal variable that directly impacts power output, thereby enhancing
feed-in forecasting accuracy. GHI typically exhibits patterns and varia-
tions throughout the day and across seasons (see Fig. 4). LSTM and GRU
networks are adaptive at learning and exploiting these temporal dy-
namics, enabling more accurate predictions of feed-in power. As these
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Fig. 5. Linear relationships between feed-in power, residual load and transformed GHI.
Each cell shows the Pearson [68] correlation coefficient with values ranging from −1
to 1. There is a strong positive correlation between feed-in and GHI (𝑟 = 0.89), and a
moderate negative correlation between feed-in and load (𝑟 = −0.42), indicating inverse
energy dynamics.

models assimilate new data, they can continuously update their internal
representations to account for changes in the relationship between
irradiance and feed-in power, thus improving prediction accuracy over
time. However, in this real-world scenario, only the feed-in variable
requires predictions to enhance low-voltage management.

Correlation matrices between GHI, feed-in power, and residual load,
as shown in Fig. 5, demonstrate a high linear correlation among these
variables, indicating their suitability for the training with the LSTM and
GRU models.

3.2. Data preparation

The raw data from the three smart meter gateways had to be
correctly processed and transformed to serve as inputs for the DL
models. Given that centralized data collection is not permissible for
the federated forecasting method, a distributed processing scheme was
employed across all data silos. This was feasible due to the uniformity
of their feature space, allowing the application of identical preparation
steps. This methodology aligns with the principles of horizontal FL [21,
56].

To address inherent shifts in the measurements of PV data, we
adjusted the GHI data by six timestamps. Additionally, to mitigate
outliers, a moving average with a window size of five time steps was
applied to the data. This window size was empirically determined to
strike a balance between over-smoothing and insufficient noise reduc-
tion, ensuring a higher data quality for the model inputs. Values below
0.01 kW were set to zero to further clean the dataset. Those low-level
noises are not relevant for grid operations by the DSO. In addition, data
quality anomalies such as duplicates and erroneous measurements have
also been cleansed and removed from the data.

By creating lagged features, temporal dependencies can be better
captured, allowing the neural networks to learn and leverage the
patterns and correlations that exist between past and current values.
For this dataset ten lags were generated, providing a balance between
capturing sufficient historical information and maintaining manageable
model complexity. The energy dataset therefore comprises a total of 33
features.

Subsequently, the data was normalized using the Min-Max scaling to
address the differences in measurement scales between feed-in power
6 
(W), residual load (W) and GHI (W/m2), which would otherwise result
in unequal contributions to the model fitting. The Min-Max scaler
transforms the data by scaling each feature to the range of [0, 1] [69].
This normalization technique is usually used for improving the model
convergence for gradient-based optimization algorithms. The scaling
was performed separately on each data silo to adhere to the horizontal
FL principle, ensuring that no data was shared across silos during
preprocessing.

The average hourly-based values and the data distributions of the
three prepared input variables are displayed in Fig. 6. As shown, the
highest average grid feed-in from PV generation occurs at midday,
when the sun is at its zenith and solar radiation is strongest. In contrast,
residual load and thus demand from the low-voltage grid increases
substantially more in the evening hours, when the sun goes down. This
recurrent pattern is advantageous for training powerful LSTM and GRU
models, as they are particularly capable of recognizing such trends in
sequential data [37,42].

3.3. Training approach I: Baseline

In the baseline approach, the following two training methods are
applied to the LSTM and GRU networks: (1) local, isolated learning per
household resp. data silo and (2) centralized learning via a single point
of truth (i.e. server).

For the local approach, training is conducted independently on each
data silo without sharing data across silos. This method results in a
model evaluation being silo-specific. In addition, the test data for the
model inference task also remains in the silos and is not shared with
other data silos. This training approach does not require moving the
data. However, compared to other approaches, the individual data silos
cannot benefit from the entirety of the training data of all data silos
and are instead completely dependent on the individual silo data. This
training approach also does not provide a data privacy guarantee.

In the centralized approach, the data from all silos is transferred
to a single location (e.g., a server). The DL models are trained on
this centralized dataset and evaluated with centralized test data. This
traditional approach promises the highest model performance as all
data is directly available and no model bias is generated by Non-
IID data. However, data collection and centralization often involves a
great deal of effort and is generally not permitted for sensitive data,
except for research as in this study, due to data protection regulations.
This also applies to the energy dataset used here, which contains
confidential meter data from households in the test area.

For initializing the model weights in the DL models, the Xavier [70]
initialization is applied in the local and centralized training approach
and is defined as following:

𝑊 ∼ 

(

−

√

6
𝑛in + 𝑛out

,

√

6
𝑛in + 𝑛out

)

, (2)

where 𝑛in and 𝑛out represent the number of output neurons from
the previous layer and output neurons from the current layer, and
 denotes a uniform distribution. This initialization contributes to
keeping the scale of the gradients the same in all layers, achieving
faster convergence and reducing the risk of vanishing and exploding
gradients.

It should be noted that for the reasons stated above, the baseline
approaches are only considered as a point of reference in order to gain
insights into the relative quality of FL approaches. An overview of the
different training approaches followed in this study is also illustrated
in Fig. 7.
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Fig. 6. Average hourly aggregated power metrics after data pre-processing with histograms and kernel density estimates showing the distributions of feed-in power, residual load
and the transformed GHI of a single residential household. The zero values indicate periods of inactivity, which are typical in energy datasets due to intermittent generation or
residual load (e.g. night time). As the PV systems were connected directly to the power grid, no batteries were used.

Fig. 7. Overview and procedures of the different training approaches. Each approach is detailed with respect to its initialization with clients/data silos, training procedure utilizing
LSTM and GRU networks, and fetching results through rolling cross-validation (CV). The model performance metrics root mean squared error (RMSE) and 𝑅2 are used for evaluating
each training approach.
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3.4. Training approach II: Federated

In pursuing the federated approach, experiments with FedAvg with-
ut DP and experiments with FedAdam and FedYogi with DP are
onducted. For those comparison experiments, we group FedAdam and
edYogi together under the term FedOpt to provide a more consistent
nd concise overview (see Fig. 7).

Using meter data obtained from the smart meter gateways, three
ifferent data silos are created for the simulated FL system. Each data
ilo is a representative of a household installed with a PV system and
onnected to the electrical grid of the test area (see Fig. 3).

For the model initialization, the Xavier distribution (see Eq. (2)) is
here not feasible because it assumes a more balanced and homogeneous
data distribution across all data silos. In fact, the Xavier initialization
was designed for centralized datasets. Its statistical assumption does not
hold for FL and would potentially cause training instability. Moreover,
Xavier initialization is based on the assumption of uniform data dis-
tribution, which is rarely the case in federated settings. Therefore, for
the FL experiments, random initialization is used to create the global
model.

3.4.1. Federated optimization
Instead of using a weighted average of the model weight matrices as

shown in Eq. (1), the model aggregation strategy can also be updated.
As suggested by [24] the FedYogi algorithm can be applied for the
model aggregation when the data silos are Non-IID. Formally, Eq. (1)
an be changed as follows:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 1
𝑚

𝑚
∑

𝑖=1

|𝑖|

||

∇𝐹𝑖(𝜃𝑡), (3)

where 𝜃𝑡 represents the global model parameters at iteration 𝑡, 𝜂 is the
learning rate, 𝑚 is the number of joint data silos in the FL system, 𝑖
denotes the dataset size of silo 𝑖, || is the total dataset size, and ∇𝐹𝑖(𝜃𝑡)
s the gradient of the loss function with respect to the model parameters
𝑡 for data silo 𝑖.

The FedYogi algorithm introduces adaptive learning rates for each
parameter, which supports in dealing with the heterogeneity of the
silo data. It leverages an adaptive momentum term, similar to those
sed in common optimization algorithms such as Adam, to adjust the
earning rates based on the history of the gradients [24,26]. This allows
he algorithm to converge more efficiently and effectively even in the
resence of Non-IID data across different data silos.

The update rules for the FedYogi algorithm can then be described
as:

𝑣𝑡+1 = 𝑣𝑡 − (1 − 𝛽1) ⋅ ∇𝐹 (𝜃𝑡)2 ⋅ sign(𝑣𝑡 − ∇𝐹 (𝜃𝑡)2) (4)

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 1
√

𝑣𝑡+1 + 𝜖
1
𝑚

𝑚
∑

𝑖=1

|𝑖|

||

∇𝐹𝑖(𝜃𝑡), (5)

where 𝑣𝑡 is an auxiliary variable representing the adaptive second
moment estimate at iteration 𝑡, 𝛽1 is the momentum term, and 𝜖 is a
small constant (typically 𝜖 = 10−8) to avoid division by zero. FedYogi
ensures that the FL training process is robust to the statistical diversity
of the silo data, ensuring a faster and more stable convergence of
the global model than standard FedAvg in FL systems with Non-IID
data [24,26,27].

FedAdam is a variant of the Adam optimization algorithm tailored
for FL [24]. It adapts the learning rates based on the first and second

oments (𝛽1 and 𝛽2) of the gradients, similar to the standard Adam
ptimizer, but incorporates aggregation and update steps on the coor-
inator server site from FedAvg [26,71]. Formally, the update rule for
edAdam can be expressed as:
 c

8 
𝑔𝑡 =
1
𝑚

𝑚
∑

𝑖=1

|𝑖|

||

∇𝐹𝑖(𝜃𝑡) (6)

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝛽1𝑚𝑡 + (1 − 𝛽1)𝑔𝑡

√

𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔2𝑡 + 𝜖
, (7)

where 𝑔𝑡 is the global gradient of the loss function with respect to the
odel parameters at time step 𝑡, 𝑚𝑡 is the first moment vector (mean of

he gradients) and 𝑣𝑡 is the second moment vector (uncentered variance
f the gradients) at time step 𝑡, and 𝜖 is a small constant added for
umerical stability. However, it is worth noting that Eq. (7) compresses

both the first and second moment updates into the model parameter
update.

3.4.2. Differential privacy
The entire data security in FL systems is based on the fact that

he training data is not moved in the data silos (data privacy by
design). Advanced attack techniques such as model membership infer-
ence attack [27,63,64] nevertheless allow the attacker to draw con-
clusions about the training data. However, by integrating the model
update strategy with DP, the data privacy aspect of FL is increased and
DL-based attacks are made more difficult.

DP is a privacy-preserving enhancement technique that provides a
uantifiable measure of the privacy level of a dataset. This is achieved
y introducing a controlled amount of noise when responding to
ueries on the data [17,20,23]. There is a need to balance the amount

of noise added: excessive noise can render computations less useful,
while insufficient noise compromises the privacy of the underlying
training data. DP introduces the concept of a privacy-loss parameter,
denoted by 𝜖, which represents the magnitude of noise added for each
computation on the data. This privacy budget quantifies the information
exposed by the computation before the privacy level is considered
inadequate. The formula for DP is defined as follows:

𝑃 𝑟 [𝑀(𝐷) ∈ 𝑍] ≤ 𝑒𝜖𝑃 𝑟 [𝑀(�̄�) ∈ 𝑍
]

+ 𝛿 , (8)

where 𝑃 𝑟 denotes probability, 𝑀 is the federated model, 𝐷 and �̄�
are two neighboring training datasets differing by only one element,
and 𝑍 is a set of possible outputs. This definition implies that 𝑀 is
𝜖-differentially private. The term 𝛿 accounts for a small probability of
failure, providing an upper bound on the likelihood that the mechanism
deviates from the privacy guarantee.

The advantage of DP is that it offers a measurable guarantee of
privacy. However, in practice, determining the appropriate level of
rivacy and setting the optimal value of 𝜖 can be challenging [60,63].

Incorporating FedOpt with DP in the proposed FL scheme (see
Fig. 7) combines the optimization efficiency of FedYogi and FedAdam
with the privacy guarantees of DP, thereby protecting sensitive and
confidential data during federated training.

3.4.3. Updated model aggregation strategy
FL with weighted FedAvg without DP is the standard case and often

lready achieves solid model performances [18,20,22,26,57]. However,
eighted FedAvg only has a certain degree of data privacy. Using
n advanced federated aggregation strategy such as FedOpt with DP
an improve the model generalization capability for Non-IID data silos
nd ensure a high level of data privacy. Therefore, in this study, a
ombination of FL with FedOpt (i.e., FedAdam and FedYogi) with DP is
sed in the proposed forecasting method. The complete model update
trategy for FL training with FedYogi and DP is also described in pseudo
ode in Algorithm 1.
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Algorithm 1 Federated training process with FedYogi and DP
1: Input: 𝑟max: max. round number, 𝐶: All data silos in FL system, 𝑆:

FL Server, 𝑛: number of randomly selected clients per FL round, 𝐸:
epochs, 𝐽 : error, 𝐿adj: adjusted loss, 𝜃: neural network weights, 𝑉 :
gradient, 𝛼: learning rate, 𝜃0: saved model weights, 𝜏: FedYogi pa-
rameter, 𝜂: learning rate, 𝛽1, 𝛽2: hyperparameters for Yogi update,
𝜖: privacy budget, 𝛿: probability of failing to achieve 𝜖-differential
privacy, 𝜎: noise scale, 𝐶: clipping norm

2: 𝑆 .init() // Initialize coordinator server 𝑆
3: for each client 𝑐 in 𝐶 do
4: 𝑐 .load_data()
5: 𝑐 .init_model(𝜃0)
6: 𝑐 .connect(𝑆)
7: end for
8: while round 𝑟 < 𝑟max do
9: Select 𝑛 random clients 𝐶𝑛

10: for each client 𝑐 in 𝐶𝑛 do
11: 𝜃𝑐𝑟 ← 𝜃𝑆𝑟 // Receive server weights
12: for epoch 𝑒 in 𝐸 do
13: 𝑋 , 𝑌 = 𝑐 .data.get_batch(𝑒)
14: 𝑌 = 𝑐 .model.predict(𝑋)
15: 𝐽 (𝜃𝑐𝑟 ) = 𝐿adj(𝑌 , 𝑌 ) // Loss function
16: 𝑔𝑐𝑟 = ∇𝐽 (𝜃𝑐𝑟 ) // Compute gradient
17: 𝑔𝑐𝑟 = 𝑔𝑐𝑟∕ max(1, ‖𝑔𝑐𝑟‖∕𝐶) // Clip the gradient
18: 𝑣𝑐𝑟 = 𝛽2 ⋅ 𝑣𝑐𝑟−1 + (1 − 𝛽2) ⋅ (𝑔𝑐𝑟 )

2 // Update variance
19: 𝜃𝑐𝑟+1 = 𝜃𝑐𝑟 − 𝜂 ⋅ 𝑔𝑐𝑟∕(

√

𝑣𝑐𝑟 + 𝜏) // Yogi update step
20: end for
21: 𝑔𝑐𝑟 = 𝑔𝑐𝑟 + (0, 𝜎2 ⋅ 𝐼) // Add Gaussian noise for DP
22: 𝑆 ← 𝜃𝑐𝑟+1 // Send weights to server
23: end for
24: 𝜃𝑆𝑟+1 =

∑𝑛
𝑐=0

𝑛𝑐
𝑛 𝜃

𝑐
𝑟+1 // Weighted averaging of 𝑛 data silos

5: 𝑟 = 𝑟 + 1
6: end while

4. Experimental settings

In this section, the evaluation methodology, loss functions, and
odel hyperparameters used in the comparative experiments are elu-

cidated.
For the conducted experiments described in Section 5, an FL system

ith three data silos was simulated on a local GPU server. As elaborated
n Section 3.4, a data silo represents a household with a PV system from
he test area. The coordinator server for the model aggregation step was
lso hosted on the local server. Docker containers were employed to
aintain data separation between the data silos and the FL framework

used in this study was integrate.ai [72]. In summary, the test system
onsisted of the following components:

• One GPU server with 2 RTX 3090 GPUs, 64 GB RAM, and i9-
9900K CPU @ 3.60 GHz.

• Three Docker containers, one for each data silo.
• One Docker container for the coordinator server.

4.1. Model architectures definition

The LSTM and GRU model architectures were each defined with two
layers: a single LSTM or GRU layer followed by an multi-layer percep-
tron (MLP). These relatively shallow DL models offer a more robust and
ess complex federated training, so LSTMs and GRUs with more layers

were not considered in this study. In all training approaches, the CUDA
accelerator was used. The model configuration for LSTM and GRU is
displayed in Table 1.

For all LSTM and GRU models, rectified linear unit (ReLU) activa-
tion functions were used between the layers. These ReLU activation
functions introduce non-linearity to the models, enabling the learning
9 
Table 1
Configuration of LSTM and GRU model architectures.

Layer type Input size Output size

LSTM Input Layer (for LSTM only) 128 64
GRU Input Layer (for GRU only) 128 64
MLP Output Layer (for both) 64 1

of complex patterns in the data by allowing only positive values to
ass through and setting negative values to zero, which also reduces
he vanishing gradient risk [73].

4.2. Evaluation approach

To evaluate the model performance of the baseline and federated
models, a rolling k-fold CV approach was used. This method involves
dividing the time series data into k-folds, where each fold is used
as a test set while the remaining k-1 folds are used for training in
a sequential order [74,75]. The rolling technique ensures that the
temporal order of the data is preserved, which is necessary in time
series forecasting tasks. For evaluating the experiments a rolling 5-fold
CV is applied on each data silo for each configuration. A graphical
llustration of this is shown in Fig. 8.

The model performance metrics RMSE and 𝑅2 were used to assess
he accuracy and explanatory power of the prediction models (see

Fig. 7). RMSE provides a measure of the average magnitude of the
errors between the predicted and actual values, with lower values
indicating better model performance. On the other hand, the 𝑅2 metric
is a statistical measure used to evaluate the quality of the fit of a
model [76]. It indicates the proportion of the variance in the dependent
ariable that is predictable from the independent variables, with values
loser to 1 suggesting a higher quality of fit. The metric is formally
efined as:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
, (9)

where the numerator is the sum of the squared differences between the
observed values (𝑦𝑖) and the predicted values (�̂�𝑖). The denominator of
Eq. (9) measures observed values (𝑦𝑖) and the mean of the observed val-
ues (�̄�). Both performance metrics are commonly used in downstream
tasks of ML-based time series forecasting [12,13,31,32,76].

After each experiment, the model performance of the federated
odels was compared with the centralized base models to determine

he effectiveness of the proposed prediction method. Therefore, the
esults from the rolling 5-fold CV were aggregated to provide a compre-
ensive evaluation of model performance across different data splits,

ensuring the robustness and reliability of the experimental findings.

4.3. Loss function

The RMSE and 𝑅2 performance metrics are used to compare each
training method (see Fig. 7). However, these performance metrics are
not used for the internal validation process during model training.
Given that the energy prediction task exhibits characteristics of a
regression problem, the mean squared error (MSE) has been used as
the loss function. The MSE is defined as follows:

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2, (10)

where 𝑦𝑖 represents the actual values, �̂�𝑖 represents the predicted values,
and 𝑛 is the number of observations. The MSE measures the average of
the squares of the errors, providing a quadratic penalty for large errors
nd thus emphasizing discrepancies between the predicted and actual
alues [77]. For the global model, a weighted average loss of MSE (see

Eq. (10)) is calculated based on the size of the data silos.
It might be worth to note that loss functions in neural networks are

differentiable functions used to quantify the accuracy of predictions.
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Fig. 8. Data splitting of the energy dataset with rolling 5-fold CV within each data silo (i.e. households with meter data). Each silo contains training data from different starting
points, resulting in Non-IID siloed data.
,

Different loss functions can lead to different optimal points on the loss
surface. However, other loss functions, such as quantile loss or custom
loss functions, were not pertinent to the objectives of this paper and,
therefore, were not considered further.

4.4. Hyperparameter search

The correct choice of hyperparameters and their values can pos-
itively influence the model generalization capability. Therefore, the
GridSearchCV [78,79] method was used in this study to select suitable
hyperparameters for the training of the LSTM and GRU models. The
procedure was as follows:

1. A grid of relevant hyperparameters and their possible values was
defined. This grid was applied equally to both model architec-
tures (LSTM and GRU).

2. GridSearchCV uses CV to evaluate the models. The dataset was
split into 𝑘 = 5 folds and trained similarly to the fold-wise
approach depicted in Fig. 8.

3. A model was trained and validated for each combination of
hyperparameters in the grid.

4. After evaluating all hyperparameter combinations, the configu-
ration with the best average MSE value on the validation folds
was selected.

Other hyperparameter search methods, such as HyperBand Search
[80] and hyperparameter optimization frameworks such as Optuna [81]
can also lead to optimal hyperparameter values. However, the goal
of this paper is to improve data privacy in smart grid analytics and
compare federated LSTM with GRU models (see Fig. 7). Therefore,
GridSearchCV has been considered as a valid approach for determining
appropriate hyperparameter values.

An overview of the functions and optimized hyperparameters used
in the comparison experiments is summarized in Table 2.

The maximum gradient norm is used to clip the gradients during
the backpropagation process in neural networks [82]. It prevents the
gradients from exploding, which is also a typical issue in RNN based
model trainings [38]. The maximum value for gradient clipping has
been identified using GridSearchCV so that the gradients will be scaled
down to ensure their norm is at most 4 (see Table 2).

To prevent overfitting during model training early stopping as a
DL regularization technique was used in all training approaches. The
training was stopped if the validation loss did not improve for a
specified number of epochs (see Table 2).

The different learning rates from Table 2 were chosen based on
the observation during grid testing that a too low learning rate for
the federated training leads to a reduced global model performance.
For example, the study’s simulations showed that at a learning rate of
𝜂 = 0.001, the global model tended to get stuck in a suboptimal local
minimum, resulting in subpar performance. This issue was observed
for both the LSTM and GRU architectures, as the low learning rate
hindered the model’s ability to make effective progress towards the
10 
Table 2
Summary of the selected functions and hyperparameters for the experiments. Hyperpa-
rameters were determined using GridSearchCV.

Functions and Hyperparameter Value

Nr. of Model Parameters (LSTM) 67,813
Nr. of Model Parameters (GRU) 54,405
Nr. of Lag Variables 30
Nr. of K-Folds 5
Batch Size 𝐵 128
Epochs (Local Training only) 𝑒𝑚𝑎𝑥 120
Federated Training Rounds 𝑟𝑚𝑎𝑥 120
Loss Criterion MSE
Performance Metrics RMSE, 𝑅2

SGD Optimizer with Momentum 𝜇 0.4
Learning Rate 𝜂𝑙 𝑜𝑐 𝑎𝑙 0.001
Learning Rate 𝜂𝑓 𝑒𝑑 𝑒𝑟𝑎𝑡𝑒𝑑 0.01
Early Stopping Regularization 𝐸𝑠𝑡𝑜𝑝 50
Dropout Rate 0.2
Differential Privacy-budget 𝜖 6
Maximum Gradient Norm 4
Federated Aggregation Functions FedAvg, FedOpt

global minimum. Thus, we conclude that identical hyperparameters
cannot be directly transferred from centralized learning to FL problems
due to the differing loss surfaces. Therefore, hyperparameters need to
be separately adjusted for both training approaches.

5. Experimental results

The results of the experiments performed in this study, as depicted
in Fig. 7, are presented and discussed in this section. Unless otherwise
described, each experiment was conducted and evaluated according to
the settings defined in Section 4.

5.1. Model comparisons

All LSTM and GRU models used in this study were not pre-trained
and were instead trained from scratch based on the energy dataset
with rolling 5-fold CV, where feed-in power was the target variable in
all experiments. The GHI and the residual load as well as the lagged
variables formed the feature set (see Fig. 8).

The maximum number of training rounds, 𝑟𝑚𝑎𝑥 = 120 and 𝑒𝑚𝑎𝑥 = 1
were used for the federated approaches. Thus, a local model in a data
silo was fully trained after one epoch. Then a federated aggregation
phase was started and the local model updates were aggregated on the
server-side with a FL algorithm, as shown and described in Fig. 3. This
reduced the training time at silo level and led to a more stable global
model more quickly. As a side effect, this model configuration also
optimizes the execution of the model training on low-computational
thin or edge clients, as there is no permanent hardware load as with
centralized or local only training with higher number of epochs.

Since early stopping patience criteria [83] were used in the exper-
iments, the number of epochs trained on each fold deviated from the
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Fig. 9. Average rolling 5-fold CV RMSE on the energy test data with three data silos using different training approaches (local training, centralized training, and weighted FedAvg).
Fig. 10. Average rolling 5-fold CV 𝑅2 on the energy test data with three data silos using different training approaches (local training, centralized training, and weighted FedAvg).
originally set value (see Table 2). However, all experiments conducted
showed that there were no relevant changes in the prediction accuracy
after 40 training rounds, so we capped the performance metrics in the
comparison plots to 40 rounds.

5.1.1. Baseline approach
In the local training approach, LSTM and GRU models were inde-

pendently trained from scratch and evaluated within each data silo.
The testing results (i.e. RMSE and 𝑅2) from each data silo were then
aggregated by averaging and grouped as local learning (see Fig. 7).
Based on the selected model configurations, the local LSTM and GRU
models demonstrated high performance in all three data silos already
after a few epochs. As shown in Fig. 9, the centralized trained LSTM
model performed best with an RMSE value of 0.0121 after 40 epochs.
In contrast, for the local training, the LSTM and GRU models performed
slightly worse with RMSE values of 0.0128 and 0.0131, respectively.
The models in the third data silo, which had the highest number of
training and test data, showed similar results in the experiments. It
cannot be entirely ruled out that the smaller number of test data points
in the first data silo (7722 fewer timestamps than in the third silo)
led to slight overfitting, even if rolling CV was used. However, the
performance results of the other local models on the downstream task,
as well as their corresponding training accuracy (MSE), were also at
similar levels. The reasons for the generally high model performance
observed in all experiments were:
11 
• The energy dataset possesses high data quality due to tailored
data preparation and normalization steps. Outliers and erroneous
sensor measurements in the PV systems or meter gateways were
less than 0.5%,

• a low number of features to avoid the curse of dimensionality
effect [84], and

• optimized hyperparameter were used.

However, the local training approach, as mentioned in Section 3.3,
is not an option for the DSO, as constant access to each data silo
(i.e. household) must be guaranteed.

For the centralized approach, the training and test data from the
individual data silos were consolidated on a central GPU server. An
arithmetic mean was applied to overlapping time series features. As
depicted in Fig. 10, the LSTM and GRU models with centralized learn-
ing performed similarly to the local models in the respective data silos.
Both model architectures achieved 𝑅2 values of 0.9948 (LSTM) and
0.9953 (GRU) in fewer than 10 epochs, indicating a high generalization
capability. It is worth noting that in this baseline training approach,
more training data did not necessarily lead to a much better model
performance compared to the locally trained models. This was because
the training data for the centralized learning setting largely consisted
of the averaged data from the three individual data silos (intersection),
so that the model performances shown for the centralized baseline
approach from Fig. 9 and Fig. 10 were to be expected.
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Table 3
Model performances of different data-driven forecasting methods on the test data. The values displayed are the mean values with standard
deviation across the epochs resp. training rounds. Best values for each metric and model architecture are in bold.

Training Approach RMSE R2 RMSE R2

LSTM from scratch GRU from scratch

Local Learning 0.0138 ± 0.0015 0.9940 ± 0.0025 0.0137 ± 0.0009 0.9946 ± 0.0011
Centralized Learning 𝟎.𝟎𝟏𝟑𝟐 ± 𝟎.𝟎𝟎𝟏𝟔 𝟎.𝟗𝟗𝟓𝟒 ± 𝟎.𝟎𝟎𝟐𝟏 𝟎.𝟎𝟏𝟐𝟖 ± 𝟎.𝟎𝟎𝟎𝟗 𝟎.𝟗𝟗𝟓𝟖 ± 𝟎.𝟎𝟎𝟏𝟑
FL with FedAvg (𝜖 = 6) 0.0332 ± 0.0091 0.9677 ± 0.0223 0.0332 ± 0.0089 0.9677 ± 0.0223
FL with FedAdam (𝜖 = 6) 0.0350 ± 0.0079 0.9677 ± 0.0019 0.0327 ± 0.0100 0.9697 ± 0.0193
FL with FedYogi (𝜖 = 6) 0.0345 ± 0.0075 0.9712 ± 0.0187 0.0342 ± 0.0076 0.9768 ± 0.0187
p
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Table 4
Model training times of the experiments using CUDA acceleration. Each experiment was
epeated 10 times to assess variability. The shortest time for each model architecture

is in bold.
Training Approach LSTM from scratch GRU from scratch

Local Learning 6 m 37 s ± 7 s 2 m 32 s ± 4 s
Centralized Learning 6 m 58 s ± 5 s 2 m 33 s ± 6 s
FL with FedAvg (𝜖 = 0) 12 m 15 s ± 10 s 8 m 25 s ± 8 s
FL with FedAdam (𝜖 = 0) 11 m 50 s ± 9 s 7 m 45 s ± 6 s
FL with FedYogi (𝜖 = 0) 11 m 35 s ± 12 s 7 m 32 s ± 9 s
FL with FedAvg (𝜖 = 6) 9 m 10 s ± 8 s 5 m 50 s ± 5 s
FL with FedAdam (𝜖 = 6) 8 m 55 s ± 7 s 5 m 40 s ± 4 s
FL with FedYogi (𝜖 = 6) 8 m 45 s ± 6 s 5 m 35 s ± 5 s

5.1.2. Federated approach
Compared to the baseline models, the federated LSTM and the GRU

ith weighted FedAvg performed slightly worse on both metrics and
equired more training rounds to converge (see Fig. 9). The training

behavior of the federated LSTM and GRU was more uniform compared
to the centrally and locally trained models because weighted FedAvg
ends to smooth out fluctuations as it averages the model updates
rom multiple data silos [56]. Each data silo contained a different

amount of training data and the averaging step resulted in a more
stable and consistent model update after each federated round. This
ehavior is also noticeable when compared to local models trained

on heavily Non-IID data, which can exhibit higher variability [17,25].
Fig. 9 and Fig. 10 also show that the performance of the global model
approaches the baseline models as the number of federated training
rounds in the network increases. Although a FL model can achieve
igh acceptable prediction accuracies, it is worth noting that FL models

cannot outperform a centralized model when using the same dataset,
ue to the way the model weights are aggregated.

Regarding the model architectures, the LSTM and GRU models
achieved similar prediction accuracy across all comparative experi-
ments. Although the GRU models performed slightly better than the
LSTM models, the federated GRU models showed slightly more oscilla-
ion, but provided a faster training. The comparable performance values
an be attributed to the fact that both architectures are types of RNNs
esigned to capture long-term dependencies in the data (see Fig. 2).

The RMSE and 𝑅2 performance metrics of the conducted experi-
ments are summarized in Table 3.

For the training times, Table 4 indicates that the GRU models
consistently completed training faster than the LSTM models, primarily
due to the lighter model architecture of GRUs compared to LSTMs (see
Fig. 2). However, a lower privacy budget 𝜖 resulted in longer federated
raining times compared to higher privacy budgets. This suggests that

the DP process of adding noise to the model weight matrices slightly
slows down FL. Nevertheless, the model architecture remains the most
relevant factor affecting computational time.

It is worth to note that FL incurs additional computational over-
ead, such as communication bandwidth costs between the coordinator
erver and data silos, as well as the overhead from the DP mechanism.
his explains why the local and centralized training approaches are
enerally faster. However, the actual training times can also vary
epending on the optimization landscape, which is mainly influenced
y the dataset.
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5.2. Impact of differential privacy

To federate the models with DP, we used the PyTorch-based Opacus
framework [85], which is also a component of integrate.ai [72], and
tested different levels of data privacy to investigate the impact of added
rivacy on the generalizability of the federated models.

The selection of an appropriate privacy budget 𝜖 impacts the perfor-
mance of federated models and is challenging to determine. A higher
privacy budget results in less noise added to the global model during
the aggregation step. For highly sensitive data, such as medical patient
ata, a very low privacy budget (often below 1) is recommended [23,

63]. However, an excessively low privacy budget can degrade the
odel performance, causing issues such as exploding or vanishing

radients due to the excessive artificial noise added to the gradients.
Concerning the training times from Table 4, if the global model

meets the convergence criteria, the training time is more likely to
increase with a smaller privacy budget (lower 𝜖). However, this is not
lways the case, as it also depends on the absolute value of 𝜖. For
xample, a reduction in 𝜖 from 80 to 60 can have a smaller impact on
he training time than a reduction from 10 to 8. As 𝜖 becomes smaller,
he noise added becomes more disruptive to the training process, thus

increasing training time more greatly.
It is essential to strike a balance between sufficient data privacy

nd effective model training. The study’s experiments indicate that for
ederating the energy dataset with a privacy budget of 6, data privacy
s slightly reduced compared to lower budgets, but the global model’s
erformance remains largely stable and high. Fig. 11 and Fig. 12 visu-

alizes the comparisons of individual federated LSTM and GRU models
with different FL algorithms and DP across different privacy budgets.
However, the average drop in federated model performance across
training rounds is only 0.0200 RMSE for FedAvg with DP compared
to centralized learning

The DP parameters, such as the maximum value for gradient clip-
ping in conjunction with the chosen privacy budget, may also influence
the federated model’s performance. The clipping function works as
a sensitivity factor in DP and specifies the maximum amount that
the model output can change [86]. Nevertheless, there is no optimal
method currently available to determine the best combination of these
parameters. Furthermore, the mutual influence of these parameters on
each other is scarcely addressed in the existing literature, highlighting
a valuable area for further research.

5.3. Impact of data distributions

As illustrated in Fig. 8, the time series in the three data silos
had different start times, resulting in a Non-IID simulated FL system.
The extended FL algorithms, FedAdam (see Eq. (7)) and FedYogi (see
q. (3)), effectively handled the Non-IID siloed energy data. Figs. 11

and 12 show that for LSTM and GRU models, FedAdam and FedYogi
achieved a better model performance more quickly than weighted
edAvg within the first five rounds of training. However, beyond this

initial period, there were no significant differences between weighted
FedAvg, FedAdam, and FedYogi, indicating that the influence of Non-

IID data is reduced when the data variation between the data silos is
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Fig. 11. Average rolling 5-fold CV RMSE comparing FedAvg, FedAdam and FedYogi for federated LSTM and GRU models with different DP budget 𝜖.

Fig. 12. Average rolling 5-fold CV 𝑅2 comparing FedAvg, FedAdam and FedYogi for federated LSTM and GRU models with different DP budget 𝜖.
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minimal. Overall, all three FL algorithms successfully reduced the vari-
ance and achieved stable model convergence in less than 40 training
rounds.

It is also worth noting, that weighted FedAvg may exhibit slower
initial convergence compared to locally and centralized trained models
(see Fig. 10), especially when the data across silos is Non-IID. Neverthe-
ess, advanced FL algorithms have superior generalization capabilities,

which enhances its robustness against overfitting to any specific data
silo distribution.

Another reason why the impact of Non-IID data played a less
ignificant role in this study, compared to DP, was the number of data
ilos. In an FL system, the probability of encountering heavily Non-IID
ilos increases with the number of joined data silos, which can hinder
he global model’s convergence.

5.4. Implications for smart grid operator

For the local training approach, the training data remains within
the data silos. Despite achieving high prediction accuracy for feed-in
ower, this training method has several inherent drawbacks:

• Model quality dependence: The quality of the model depends
solely on the respective silo’s data.

• Data quality issues: A data silo with highly imbalanced, under-
populated, or erroneous data results in a poorer prediction model
that cannot be compensated for by other data silos with higher
data quality. Collaborative DL is not possible with this approach,
as the model weights remain local.

• Scalability challenges: Scaling with 𝑛 households in the test area is
complex and cost-intensive due to the lack of a centralized access.

The situation is similar with centralized learning. Access to the data
silos and the transfer of sensitive training and test data is required,
which is often not feasible in real-world scenarios.

Although Table 3 indicates that the prediction accuracy of federated
odels with DP and a privacy budget of 𝜖 = 6 is generally somewhat
orse than local and centralized models without DP, the FL approach
ith DP offers distinct advantages. The privacy by design principle of
L ensures that silo data remains local, but only the combination of FL
ith DP guarantees a high level of data privacy during the exchange of

aw model weights in the federated training process, thereby reducing
he risk of DL based attacks such as model membership inference.

By using FedOpt algorithms (FedAdam or FedYogi), federated re-
urrent models such as LSTM and GRU can be effectively trained on
eavily Non-IID silo data, facilitating scalability with additional data

silos. The experiments also demonstrated that GRU models are trained
aster and reached a stable performance plateau more quickly than
STM models. However, as shown in Fig. 11, the absolute performance

differences between GRU and LSTM models are relatively small.
This study recommends the proposed federated training approach

tilizing GRU, FedOpt, and the inclusion of DP with a moderate privacy
udget to the DSO for forecasting feed-in power in the low-voltage

grid. The introduced prediction method adheres to state-of-the-art data
protection regulations and eliminates the need for direct access to
silo data (i.e., meter gateways) in households for smart grid analytics.
Furthermore, various experiments in this study have demonstrated that
the performance of federated models is only marginally inferior to that
f locally or centrally trained models.

5.5. Summary of results

The results and the main contributions in this study can be summa-
ized as follows:

• Our work is distinguished as a first comparison study that em-
ploys FL to train and compare LSTM and GRU models in a privacy-
preserving manner for feed-in power prediction in low-voltage
grids.
 w
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• The dataset, unique in its composition, encompasses data from
authentic residential PV systems located in South Germany with
a 15-minute time resolution, augmented with regional solar ir-
radiance information, presenting a real-world scenario for the
application of FL.

• With the implementation of DP, an improvement in the data
privacy of federated LSTM and GRU models is introduced to meet
privacy regulations in smart grids.

• This study proposes a federated-driven forecasting approach that
is characterized by its accuracy, computational efficiency and
focus on maximizing data privacy. Furthermore, the severity of
Non-IID problems between data silos is reduced by introducing
an advanced FL algorithm, resulting in an improved and stable
federated model.

5.6. Future directions for federated learning research

In future work, we plan to extend the proposed prediction method to
encompass additional real-world households within the test area. This
extension will allow us to observe the behavior of the training process
as more households join the FL system, providing insights into scala-
bility and robustness. It will be particularly interesting to investigate
the impact of the Non-IID scenario when data silos with adverse data
distributions or low data quality are included. Understanding how these
factors influence model performance and generalizability is relevant for
practical FL applications.

Moreover, investigating the application of our prediction method to
other domains beyond the energy sector could provide valuable insights
into its generalizability and adaptability. Future studies might explore
the integration of additional privacy-preserving techniques, such as
secure multi-party computation [58], homomorphic encryption [60]
or model personalization [14], to further enhance data security in FL
systems.

Additionally, further research is required in the area of federated hy-
erparameter tuning with DP and other optimization parameters such
s gradient clipping. This involves exploring the potential of automated

methods to optimize federated hyperparameters while maintaining pri-
vacy guarantees. We think there is substantial untapped potential in
this area, which could lead to significant improvements in security of
FL and training efficiency.

In summary, our future work aims to address scalability, robust-
ess, and optimization in FL, with a focus on maintaining strong

privacy guarantees. These efforts will contribute to advancing the field
and ensuring the practical applicability of FL in various real-world
scenarios.

6. Conclusion

This study introduced a novel data privacy-preserving feed-in power
forecasting method with federated learning (FL) and differential pri-
vacy (DP) for distributed system operators (DSOs) operating in low-
voltage grids. To achieve this, experiments were conducted using three
years of real-world meter data from a test area in a southern German
ity. This meter data included the feed-in power resulting from a

surplus of photovoltaic (PV) power, as well as the residual load from
he low-voltage grid when the PV system’s generation was insufficient.
he data was enriched with meteorological information such as global
orizontal irradiance. Three households with PV systems from the
est area were selected for the study object. In the context of FL,
ach household represented an isolated data silo, with no interaction

between the silos. Consistent data preparation across the data silos
improved the data quality.

An experimental comparison was conducted between federated
raining approaches, local silo-based training, and centralized learning,
here all energy data was consolidated in a single location. For the
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model architectures, the recurrent deep learning models long short-
term memory (LSTM) and gated recurrent unit (GRU) were trained and
ederated from scratch, as they are well-suited for capturing long-term

dependencies and temporal structures in time series data.
The experimental results demonstrated that the choice of the pri-

vacy budget for DP affects the performance of the federated LSTM and
RU models. A low privacy budget resulted in inferior model perfor-
ance compared to a higher privacy budget, which, in turn, led to a

ower data privacy. For the feed-in power forecasting, we considered
 moderate privacy budget of 𝜖 = 6 to be an appropriate trade-off
etween the model inference quality and inevitable data privacy.

The unequal data distribution among the data silos, due to dif-
ferent starting times, did not substantially affect the generalization
ability of the federated models when using weighted FedAvg, FedAdam,
or FedYogi. Only during the first initial federated training rounds
FedAdam and FedYogi achieved a stable plateau in the loss surface
faster than weighted FedAvg. Regardless of the chosen federated ag-
gregation strategy, this study showed that there were larger deviations
between federated LSTM and GRU models in the early training rounds,
with GRU models converging faster than LSTM models. The evalua-
tion was conducted using a rolling 5-fold cross-validation approach
to detect potential overfitting. Compared to local silo-wise learning
and centralized learning, the federated approaches performed slightly
worse. However, federated GRU models with FedYogi and DP achieved
a sufficiently high prediction accuracy, with an RMSE of 0.0342 and
an 𝑅2 of 97.68%. In contrast to other data-driven training approaches,
the proposed federated forecasting method complies with common data
protection standards and enables the DSO to efficiently perform smart
grid analyses without the need for extensive centralization of meter
data.
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